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SRT Dosimetry Methods under Development: Outline

• Voxel-level dosimetry

• Sub-voxel dosimetry models

• Biological effect models

• Cellular dosimetry (Roger Howell)

• New ICRP Specific Absorbed Fractions (Wes Bolch)

• Simplifications to bring dosimetry to the clinic



Why Voxel-Level ?

• Voxel-level dosimetry allows calculation of the biological effect 
of non-uniform absorbed dose distributions

– Can be less efficient in killing tumor, less toxic to normal tissue

– Equivalent Uniform Biologically Effective Dose (EUBED)

• Being developed for treatment planning and verification

O'Donoghue JA. Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med. 1999 Aug;40(8):1337-41

STD of BED distribution



Patient specific voxel-level dosimetry: 

facilitated by SPECT/CT, PET/CT
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Patient Specific Voxel-level Dosimetry

Examples presented:

1) I-131 tositumomab radioimmunotherpy (RIT) in 
Non-Hodgkin’s Lymphoma (NHL)

2) Y-90 microsphere radioembolization (RE) in 
hepatocellular carcinoma (HCC) and liver mets

3) I-124 PET as surrogate for radioiodine therapy in 
thyroid cancer



Voxel level dosimetry:I-131 RIT example

• Sequential 
SPECT/CT

• MC dosimetry 
accounting for 
tumor shrinkage 
with radial 
deformation 

• Imaging based 
marrow dosimetry

Day 0 post-tracer

Day 8 post-therapy

Day 2 post-therapy

Dewaraja et al, MIRD 24, JNM 2013:2182-8
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I-131 RIT: Potential for treatment planning
Correlation between tracer and therapy predictions and absorbed dose and outcome

R² = 0.74
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Dewaraja et al, JNM 2014, 1047-53

PFS stratified by tumor dose

Median PFS 
13.6 mo for > 200 cGy
1.9 mo for < 200 cGy
(p < 0.0001)



I-131 RIT: ‘Cold’ (unlabeled) antibody effect

• Outcome is not due to absorbed dose alone

• Tracer (0.2 GBq) and therapy (4 GBq) I-131 tositumomab co-
administered with 450 mg unlabeled tositumomab

• Initial shrinkage likely in response to cold antibody

• Estimated from CT of SPECT/CT

Dewaraja et al, JNM 2010;1155-62         Roberson et al, EJNMMI 2011:874-83 

323 mL 216 mL 135 mL

Day 0 post-tracer Day 6 post-tracer Day 8 post-therapy



Bio-Effect model

• Sum of relevant quantities affecting therapy outcome 

• Parameters (a, l) determined for each patient from cell 
survival/clearance model fits to measured tumor shrinkage

• Patient biomarkers (Ki-67, P53, …) investigated to 
determine parameters pre-therapy

tλt)P(v,λt)RE(v,t)D(v,αt)BET(v, tp 

+ cold effect+ dose effect - proliferation

Roberson et al, EJNMMI 2011:874-83                       Roberson et al, Cancer Biotherapy and Radiopharmaceuticals. 2017;309-319



I-131 RIT: model fits to CT-measured tumor shrinkage

• 3 time points after tracer and 3 after therapy (within 15 days)

Roberson et al, Cancer Biotherapy and Radiopharmaceuticals. 2017;309-319

No cold effect
High radiosensitivity

High cold effect
High radiosensitivity

No cold effect, low radiosensitivity
High proliferation

High cold effect
Low radiosensitivity



R=0.92
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Justin Mikell et al, EANM Annual Meeting 2017
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Why voxel level? Y-90 RE treatment verification



Why voxel level ? I-124 PET example

• PET at 3–4 time points within 7 d

• Importance of fully 3D data

– If a single PET point was used 
(assuming static distribution) 
dose to sub-regions 
underestimated by up to 56%

– Limitation of hybrid planar-
SPECT approach where all 
voxels within tumor assigned 
same kinetics  

Sgouros et al, JNM 2014;1366-1372

Time-activity for 3 sub-regions 
were evaluated 



Sub-voxel dosimetry



Macro to micro dosimetry

• Activity distributed heterogeneously within voxels

• SPECT, PET, capabilities insufficient to deduce activity 
distributions at this scale
– eg. central &  portal vein in a liver lobule, glomerulus & tubules in kidney nephron

• Sub voxel model of tissue

– Relate measured macroscopic activity distributions to micro 
distributions using a model (eg. pre-clinical model)

• Important when range in tissue is close to microstructure 
dimensions



Macro-to-micro dosimetry: nephron model of kidney

• Especially important for targeted alpha particle dosimetry

• Idealized nephron geometry for generating MC based S value

– Geometric shapes with parameters from  ex vivo imaging 

• Macro-to-micro (kidney to nephron) model

Hobbs RF, et al. Phys Med Biol. 2012 Jul 7;57(13):4403-24.

Fractional occupancy
Ratio of TIA in compartment to kidney: from 
activity measured ex-vivo (alpha camera)

Patient measured kidney activity 

Dose to target nephron 
compartment



Subvoxel dosimetry model: bone marrow

• Coupling of macro and micro MC particle transport codes

– Transport handled back and forth between micro and macro 
codes when particle enters marrow bearing region

– Trabeculae model from ex-vivo CT & MR microscopy images

• Up to 30% difference in S values compared to conventional 
chord based model

Shah AP, et al J Nucl Med. 2005;46:344-53. 



Bone marrow: spongiosa model with voxel-level variations 

• ‘Faster’ approach: MC derived energy absorption fractions
– Tabulated for arbitrary bone fractions and cellularities

– 3 component (bone, red or yellow marrow) model of spongiosa

– Module added to existing MC (DPM) algorithm

• Red marrow doses in I-131 RIT patients imaged with SPECT/CT
– Patient specific cellularity (biopsy) and CT-based  bone volume fractions

– 20% different from imaging based assuming homogeneous spongiosa

Wilderman SJ, Roberson PL, Bolch WE, Dewaraja YK. Phys Med Biol. 2013;58:4717-31.



Patient results with sub voxel bone marrow dosimetry

• Dose – toxicity in NHL patients treated with I-131 tositumomab

R = -0.51 p=0.016

R = -0.29 p=0.21
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Liver microdosimetry in Y-90 radioembolization



Liver microdosimetry in Y-90 radioembolization

• Low hepatic toxicity (per Gy) of Y-90 RE compared with EBRT

– Similar toxicity with resin 70 Gy, glass 100 Gy and EBRT 40 Gy

– Potentially due to non-uniformity in dose distribution

• Arterial tree model with non-uniform trapping

– 40% - 60% spreading between 2 daughter vessels shifted lobule 
distribution to lower doses

Predicted distribution
for 60% - 40% spreading

Predicted for 
50% - 50% spreading

Observed

Walrand S et al, JNM 2014;55:135-140



Cellular dosimetry



ICRP Absorbed Fractions using Realistic Phantoms



Simplifications to bring dosimetry to the clinic



Potential simplifications

• When voxel-level dosimetry is not feasible and quantity of 
interest is the mean absorbed dose the procedure can be 
simplified, yet remain patient specific to some extent  

• Time integrated activity

– Commercial availability of quantitative SPECT/CT (output Bq/mL)

– Reduced time points (mixed model fitting or single time point)

– Hybrid planar-SPECT imaging

• Absorbed dose calculation

– Commercial software coupling images directly with dosimetry 

– New SAFs and S values from realistic ICRP phantom



Commercially available tools: Siemens xSPECT Quant

Courtesy of Johannes Zeintl, Siemens Healthineers



Commercially available tools: GE Dosimetry Toolkit

Courtesy of Prof. Kreissl and Dr. Grosser, University Hospital Magdeburg, Germany



Commercially available tools: MIM (vendor neutral)

Courtesy MIM Software

Convert the SPECT to a dose object 

View dose volume histograms for each region 
of interest

Example: Y90 microsphere bremsstrahlung SPECT/CT



Commercially available tools: Hermes (vendor neutral)

https://www.hermesmedical.com/product-showcase/olinda/



Simplifications for generating time integrated activity

• Mixed model fitting

– curves from multiple subjects 
are jointly estimated

• Single time point method

– Need estimate of population 
average of parameters

– Dose estimates 10 – 20%
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At the optimal sampling point, Ã* ≈ Ã  even 
when k* deviates from k by as much as 50% 
because of the compensating relationship 
between Ao* and k*.

Schipper et al, Cancer Biotherapy Radiopharm, 2012                   Courtesy Mark Madsen, PhD University of Iowa (Accepted to Med Phys)



Simplifications: Hybrid planar – SPECT 

• Normalization of planar derived time-activity to single SPECT

– Assuming  static distribution

Patient imaged after I-131 tositumomab RIT
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Simplification: 'full’ dosimetry vs. local energy deposition

• For particles with short path-length and low intensity or no 
gamma-ray emissions 

– 3D dosimetry assuming energy absorbed locally within voxel 
where decay occurred vs. radiation transport

– Activity map converted to absorbed dose simply using a 
conversion factor

• Differences between the 2 

methods depend on voxel size, 

spatial resolution, noise

Pasciak et al, Frontiers in Oncology, May 2014
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